Sequential Feature Explanations for Anomaly Detection
نویسندگان
چکیده
In many applications, an anomaly detection system presents the most anomalous data instance to a human analyst, who then must determine whether the instance is truly of interest (e.g. a threat in a security setting). Unfortunately, most anomaly detectors provide no explanation about why an instance was considered anomalous, leaving the analyst with no guidance about where to begin the investigation. To address this issue, we study the problems of computing and evaluating sequential feature explanations (SFEs) for anomaly detectors. An SFE of an anomaly is a sequence of features, which are presented to the analyst one at a time (in order) until the information contained in the highlighted features is enough for the analyst to make a confident judgement about the anomaly. Since analyst effort is related to the amount of information that they consider in an investigation, an explanation’s quality is related to the number of features that must be revealed to attain confidence. One of our main contributions is to present a novel framework for large scale quantitative evaluations of SFEs, where the quality measure is based on analyst effort. To do this we construct anomaly detection benchmarks from real data sets along with artificial experts that can be simulated for evaluation. Our second contribution is to evaluate several novel explanation approaches within the framework and on traditional anomaly detection benchmarks, offering several insights into the approaches.
منابع مشابه
Dynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملVisualization of anomaly detection using prediction sensitivity
Visualization of learning-based intrusion detection methods is a challenging problem. In this paper we propose a novel method for visualization of anomaly detection and feature selection, based on prediction sensitivity. The method allows an expert to discover informative features for separation of normal and attack instances. Experiments performed on the KDD Cup dataset show that explanations ...
متن کاملAnomaly Detection and Structural Analysis in Industrial Production Environments
Detecting anomalous behavior can be of critical importance in an industrial application context. While modern production sites feature sophisticated alarm management systems, they mostly react to single events. Due to the large number and various types of data sources a unified approach for anomaly detection is not always feasible. One prominent type of data are log entries of alarm messages. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1503.00038 شماره
صفحات -
تاریخ انتشار 2015